Difference between revisions of "Sandbox"

From Adaptive Population based Simplex
Jump to: navigation, search
(Math test)
Line 1: Line 1:
 
== Math test ==
 
== Math test ==
 +
Use LaTeX syntax.<br />
 +
 
Warning: the Preview doesn't work for mathematical expressions. You have to Publish (or Save page).
 
Warning: the Preview doesn't work for mathematical expressions. You have to Publish (or Save page).
  
$N=20*sqrt{D}$
+
$N=20sqrt{D}$
  
 
$$
 
$$
Line 9: Line 11:
 
   \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}}
 
   \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}}
 
$$
 
$$
 +
 +
<math>
 +
N=\max\left(40+2\sqrt{D},\sqrt{40^{2}+\left(D+2\right)^{2}}\right)\label{eq:N_popsize}
 +
</math>

Revision as of 19:46, 11 June 2013

Math test

Use LaTeX syntax.

Warning: the Preview doesn't work for mathematical expressions. You have to Publish (or Save page).

$N=20sqrt{D}$

$$ \operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2}\,dt = \frac{e^{-x^2}}{x\sqrt{\pi}}\sum_{n=0}^\infty (-1)^n \frac{(2n)!}{n!(2x)^{2n}} $$

\( N=\max\left(40+2\sqrt{D},\sqrt{40^{2}+\left(D+2\right)^{2}}\right)\tag{1} \)